Глава 2 Этот мифический «человеко-месяц»
Глава 2 Этот мифический «человеко-месяц»
Чтобы приготовить вкусную пищу, требуется время. Если вам пришлось ждать, то лишь потому, что мы хотим лучше обслужить вас и доставить вам удовольствие.
МЕНЮ РЕСТОРАНА «АНТУАН» В НЬЮ-ОРЛЕАНЕ
Программные проекты чаще проваливаются из-за нехватки календарного времени, чем по всем остальным причинам вместе взятым. Почему эта причина неудач столь распространена?
Во-первых, слабо развиты наши методы оценок. В сущности, они отражают молчаливое и совершенно неверное предположение, что все будет идти хорошо.
Во-вторых, наши методы оценки ошибочно путают достигнутый прогресс с затраченными усилиями, неявно допуская, что скорость выполнения проекта пропорциональна количеству занятых в нем сотрудников.
В-третьих, поскольку менеджеры программных проектов не уверены в своих оценках, им часто недостает вежливого упрямства, как у шеф-повара ресторана «Антуан».
В-четвертых, выполнение графика работ слабо контролируется. Типовые опробованные в других инженерных дисциплинах методы считаются радикальными нововведениями при разработке программного обеспечения.
В-пятых, при обнаружении отставания от графика естественной и общепринятой реакцией является увеличение числа разработчиков. Это все равно, что тушить пламя бензином. В результате дела идут значительно хуже. Чем сильнее пламя, тем больше нужно бензина, и в итоге этот путь приводит к катастрофе.
Контроль выполнения графика будет предметом отдельного разговора. Рассмотрим более подробно остальные аспекты проблемы.
Оптимизм
Все программисты — оптимисты. Возможно, эта современная разновидность колдовства особенно привлекательна для тех, кто верит в хэппи-энды и добрых фей. Возможно, сотни неудач отталкивают всех, кроме тех, кто привык сосредоточиваться на конечной цели. А может быть, дело всего лишь в том, что компьютеры и программисты молоды, а молодости свойствен оптимизм. Как бы то ни было, в результате одно: «На этот раз она точно пойдет!» Или : «Я только что выявил последнюю ошибку!»
Итак, в основе планирования разработки программ лежит ложное допущение, что все будет хорошо, т.е. каждая задача займет столько времени, сколько «должна» занять.
Глубокий оптимизм программистов заслуживает более серьезного изучения. Дороти Сэйерс (Dorothy Cayers) в своей превосходной книге «Разум творца» (“The Mind of the Maker”) выделяет в творческой деятельности три стадии: замысел, реализацию, взаимодействие. Соответственно, книга, компьютер или программа сначала возникают как идеальное построение, существующее не во времени и пространстве, а лишь в мозгу своего создателя. Реализация же во времени и пространстве происходит с помощью пера, чернил, бумаги, либо — проводов, кремния и феррита. Творение будет завершено, когда кто-либо прочтет книгу, воспользуется компьютером или запустит программу, тем самым вступив во взаимодействие с разумом их создателя.
Это описание используемое Сэйерс для освещения не только творческой деятельности человека, но и христианского догмата Троицы, поможет нам в нашей текущей задаче. Для человека, который что-то создает, неполнота и противоречивость идей выявляются только при их реализации. Поэтому для теоретика изложение на бумаге, экспериментирование, изготовление является неотъемлемыми частями творческого процесса.
Во многих видах творческой деятельность материал с трудом поддается обработке. Дерево колется, краски пачкаются, электрические цепи «звенят». Эти физические ограничения сужают круг идей, которые могут быть выражены, а также создают неожиданные трудности при реализации.
Реализация, таким образом, требует сил и времени как из-за физического материала, так и ввиду неадекватности основополагающих идей. Большую часть затруднений при реализации мы склонны объяснять недостатками физического материала, поскольку он «чужд» нам — в отличие от идей, которыми мы гордимся.
При создании же программ мы имеем дело с чрезмерно податливым материалом. Программист осуществляет свои построения на основе чистого мышления — понятий и очень гибких их представлений. Поскольку материал столь податлив, мы не ожидаем трудностей при реализации, отсюда и наш глубокий оптимизм. Из-за ошибочности наших идей возникают ошибки в программах. Следовательно, наш оптимизм не имеет оправдания.
Для отдельной задачи допущение, что все буде хорошо, оказывает на график работ вероятностный эффект. Все может действительно идти по плану, поскольку есть некоторое распределение вероятности для возможной задержки и существует конечная вероятность того, что задержки не будет. Однако большой программный проект состоит из множества задач, часть из которых может быть начата только после окончания других. Вероятность того, что все задачи будут завершены в срок, бесконечно мала.
Человеко-месяц
Вторая ошибка рассуждений заключена в самой единице измерения, используемой при оценивании и планировании: человеко-месяц. Стоимость действительно измеряется как произведения числа занятых на количество затраченных месяцев. Но не достигнутый результат. Поэтому использование человеко-месяца как единицы измерения объема работы является опасным заблуждением.
Рис. 2.1 Зависимость времени от числа занятых — полностью разделимая задача
Число занятых и число месяцев являются взаимозаменяемыми величинами лишь тогда, когда задачу можно распределить среди ряда работников, которые не имеют между собой взаимосвязи (рис. 2.1). Это верно, когда жнут пшеницу или собирают хлопок, но в системном программировании это далеко не так.
Рис. 2.2 Зависимость времени от числа занятых — неразделимая задача
Если задачу нельзя разбить на части, поскольку существуют ограничения на последовательность выполнения этапов, то увеличение затрат не оказывает влияния на график (рис. 2.2). Чтобы родить ребенка требуется девять месяцев независимо от того, сколько женщин привлечено к решению данной задачи. Многие задачи программирования относятся к этому типу, поскольку отладка по своей сути носит последовательный характер.
Рис. 2.3 Зависимость времени от числа занятых — разделимая задача, требующая обмена данными
Для задач, которые могут быть разбиты на части, но требуют обмена данными между подзадачами, затраты на обмен данными должны быть добавлены к общему объему необходимых работ. Поэтому достижимый наилучший результат оказывается несколько хуже, чем простое соответствие числа занятых и количества месяцев (рис. 2.3).
Дополнительная нагрузка состоит из двух частей — обучения и обмена данными. Каждого работника нужно обучить технологии, целям проекта, общей стратегии и плану работы. Это обучение нельзя разбить на части, поэтому данная часть затрат изменяется линейно в зависимости от числа занятых.
Рис. 2.4 Зависимость времени от числа занятых — задача со сложными взаимосвязями
С обменом данными дело обстоит хуже. Если все части задания должны быть отдельно скоординированы между собой, то затраты возрастают как n(n-2)/2. Для трех работников требуется втрое больше попарного общения, чем для двух, для четырех — вшестеро. Если помимо этого возникает необходимость в совещаниях трех, четырех и т.д. работников для совместного решения вопросов, положение становится еще хуже. Дополнительные затраты на обмен данными могут полностью обесценить результат дробления исходной задачи и привести к положению, описываемому рисунком 2.4.
Поскольку создание программного продукта является по сути системным проектом — практикой сложных взаимосвязей, затраты на обмен данными велики и быстро начинают преобладать над сокращением сроков, достигаемым в результате разбиения задачи на более мелкие подзадачи. В этом случае привлечение дополнительных работников не сокращает, а удлиняет график работ.
Системное тестирование
Из всех элементов графика работ наибольшему воздействию со стороны ограничений на последовательность выполнения действий подвержены отладка компонентов и системное тестирование. Кроме того, затраты времени зависят от количества выявленных ошибок и от того, насколько они «скрытые». Теоретически, ошибок быть не должно. Из-за своего оптимизма мы обычно склонны недооценивать действительное количество ошибок. Поэтому в программировании придерживаться графиков работ обычно труднее всего при отладке.
В течение ряда лет при планировании разработки программного обеспечения я пользуюсь следующим эмпирическим правилом:
1/3 — планирование,
1/6 — написание программ,
1/4 — тестирование компонентов и предварительное системное тестирование,
1/4 — системное тестирование при наличии всех компонентов.
Это правило имеет несколько важных различий с общепринятым планированием:
1. На планирование отводится больше времени, чем обычно. И все равно этого времени едва достаточно для разработки подробных и надежных технических условий и недостаточно для проведения исследовательских работ или поиска новейших технологий.
2. Половина графика работ, отведенная на отладку законченного кода, значительно выше нормы.
3. Та часть, которую легко оценить, т.е. написание кода, занимает всего одну шестую общего времени.
Изучая проекты, график которых был составлен традиционным образом, я обнаружил, что немногие из них отводили по графику половину времени на отладку, но на практике в большинстве случаев тратили на нее половину фактического времени. Многие проекты укладывались в график на всех этапах, исключая системное тестирование.[2]
Особенно катастрофические последствия может иметь недостаток времени для системного тестирования. Поскольку задержка происходит в конечной части графика, никто не подозревает о том, что график находится под угрозой срыва вплоть до дня сдачи продукта. Плохие вести, полученные поздно и без предупреждения, обескураживают клиентов и менеджеров.
Более того, задержка на этом этапе имеет особенно тяжелые материальные и психологические последствия. Проект осуществляется при полной
укомплектованности работниками и максимальных финансовых издержках. Что важнее, программное обеспечение должно обеспечить поддержку другой деловой активности (поставки компьютеров, запуска новых производственных мощностей и т.п.), и связанные с задержкой вторичные издержки очень высоки. На практике эти вторичные издержки могут быть выше, чем все прочие. Поэтому очень важно в изначальном графике работ отвести достаточно времени для системного тестирования.
Робость в оценках
Для программиста, как и для повара, давление со стороны хозяина может определять запланированный срок завершения задачи, но не может определять время ее фактического завершения. Омлет, обещанный через две минуты, может успешно жариться, но если через две минуты он не готов, то у клиента есть две возможности: ждать еще или съесть его сырым. Тот же выбор встает и перед заказчиком программного обеспечения.
У повара есть еще одна возможность: добавить жару. В результате омлет часто оказывается безнадежно испорченным: горелым с одного края и сырым — с другого.
Я не думаю, что у менеджеров программных продуктов меньше храбрости или твердости, чем у поваров или других менеджеров в инженерных областях. Но липовые графики, нацеленные на желательную хозяину дату, встречаются здесь значительно чаще, чем в любых других инженерных областях. Очень тяжело, рискуя потерять рабочее место, с энергией и любезностью отстаивать срок, который определен без применения каких-либо количественных методов при недостатке данных и подкреплен, в основном, интуицией менеджера.
Очевидно, необходимо сделать две вещи. Мы должны получить и сделать общедоступными численные данные, характеризующие производительность, частоту программных ошибок, методы оценки и т.д. Вся отрасль может только выиграть от опубликования таких данных.
Пока методы оценивания не получат более прочной основы, менеджерам остается только мужаться и защищать свои прогнозы, утверждая, что полагаться на их слабую интуицию все же лучше, чем основываться на одних желаниях.
Действия при срыве графика
Что делают, когда важный программный проект начинает отставать от графика? Естественно, добавляют людей. Как показывают рисунки 2.1-2.4, это не всегда помогает.
Рассмотрим пример.[3] Предположим, что трудоемкость задачи оценивается в 12 человеко-месяцев, и три человека должны выполнить ее за 4 месяца, причем в конце каждого месяца имеются четыре контрольные точки A, B, C и D, в которых можно произвести измерения (рис. 2.5).
Рис. 2.5
Предположим теперь, что первая контрольная точка была достигнута лишь по истечении двух месяцев. Какие альтернативы имеются у менеджера?
1. Допустим, что необходимо соблюсти срок выполнения задачи, и ошибочно оценена была только первая часть задачи, т.е. рисунок 2.6 верно отражает положение. Значит, остается 9 человеко-месяцев трудозатрат и два месяца, поэтому понадобится 4Ѕ человека, и к троим имеющимся нужно добавить еще двоих.
Рис. 2.6
2. Допустим, что необходимо соблюсти срок выполнения задачи, и одинаково занижена была вся оценка , т.е. положение соответствует рисунку 2.7. Значит, остается 18 человеко-месяцев трудозатрат и два месяца, поэтому понадобится 9 человек. К троим имеющимся нужно добавить еще шестерых.
Рис. 2.7
3. Изменить график. Мне нравится замечание, сделанное П. Фаггом (P. Fagg), опытным инженером по вычислительной технике: «Маленьких задержек не бывает». Это означает, что в новом графике должно быть достаточно времени, чтобы работа была исполнена тщательно и полностью, и не пришлось бы вновь переделывать график.
4. Сократить задачу. На практике этим всегда и кончается, когда команда обнаруживает, что не укладывается в график. Когда очень высоки вторичные издержки, это единственное, что можно сделать. Менеджеру предоставляется возможность официально и аккуратно сократить задачу, изменить график, либо наблюдать, как задача молча урезается при поспешном изменении проекта и неполном тестировании.
В первых двух случаях настаивать на том, чтобы задача в неизменном виде была выполнена за четыре месяца, чревато катастрофой. Рассмотрим, к примеру, восстановительный эффект первой альтернативы (рис. 2.8). Двое новых работников, какими бы знающими они ни были, и как бы быстро не удалось их найти, должны изучить задачу с помощью одного из опытных разработчиков. Если для этого потребуется месяц, то 3 человеко-месяца будут потрачены на работу, которая не учитывается в исходной оценке. Кроме того, задача, разбитая первоначально на три потока, должна быть теперь перекроена на пять частей. Поэтому часть уже сделанной работы будет потеряна, а системное тестирование нужно будет продлить. В результате в конце третьего месяца останется работы существенно больше, чем на 7 человеко-месяцев, а в распоряжении будет 5 подготовленных человек и один месяц. Согласно рисунку 2.8 продукт будет запаздывать так же, как если бы ни одного человека не было добавлено (см. рис. 2.6).
Если рассчитывать управиться за четыре месяца с учетом только времени обучения, но не перераспределения задач и дополнительного системного тестирования, то в конце второго месяца потребуется добавить 4, а не 2 человека. Чтобы компенсировать воздействие перераспределения задач и системного тестирования, потребуются еще новые люди. Теперь, однако, команда состоит не из 3, а, по крайней мере, 7 человек, и такие вопросы, как организация команды и распределение задач приобретают новый качественный уровень.
Обратите внимание, что к концу третьего месяца дело выглядит весьма мрачно. Несмотря на все административные усилия контрольная точка, намеченная на 1 марта, не достигнута. Возникает сильный соблазн повторить цикл, добавив еще людей. Это безумное решение.
Рис. 2.8
В предшествующих рассуждениях предполагалось, что только первая контрольная точка была неверно рассчитана. Если 1 марта сделать консервативное предположение, что весь график был излишне оптимистичен, как отражено на рисунке 2.7, требуется добавить 6 человек к исходной задаче. Расчет воздействия обучения, перераспределения задач и системного тестирования предоставляется сделать читателю в качестве упражнения. Нет сомнений, что при попытке уложиться в срок в итоге получится худший продукт, чем при изменении графика и сохранении первоначальных троих человек без усиления.
Крайне упрощая, сформулируем Закон Брукса:
Если проект не укладывается в сроки, то добавление рабочей силы задержит его еще больше.
Это развенчивает миф о человеко-месяце. Продолжительность осуществления проекта зависит от ограничений, накладываемых последовательностью работ. Максимальное количество разработчиков зависит от числа независимых подзадач. Эти две величины позволяют получить график работ, в котором будет меньше занятых разработчиков и больше месяцев. (Единственная опасность заключается в возможном устаревании продукта.) Нельзя, однако, составить работающие графики, в которых занято больше людей и требуется меньше времени. Программные проекты чаще проваливаются из-за нехватки календарного времени, чем по всем остальным причинам вместе взятым.
Данный текст является ознакомительным фрагментом.