27. Нормальная линейная модель парной регрессии

При построении нормальной (классической) линейной модели парной регрессии, т. е. модели регрессии с одной факторной переменной, учитываются следующие условия :

1) хi (факторная переменная) является неслучайной (детерминированной) величиной, независящей от распределения случайной ошибки регрессионной модели εi;

2) математическое ожидание случайной ошибки регрессионной модели Е(εi) равно нулю во всех i наблюдениях, т. е. Е ( εi ) = 0 при i = 1,n;

3) дисперсия случайной ошибки регрессионной модели D( εi ) постоянна для всех наблюдений, т. е.:

D( εi ) = Е( εi ) = G2 = const;

4) случайные ошибки регрессионной модели не коррелированы между собой, т. е. ковариация случайных ошибок любых двух разных наблюдений равна нулю:

Cov ( ε i ε j) = E( ε i ε j) = 0, где i j .

Ковариацией называется показатель тесноты связи между переменными:

где x y – среднее арифметическое значение произведения факторной и результативной переменных:

x – среднее арифметическое факторной переменной;

y – среднее арифметическое результативной переменной;

Четвертое условие выполняется в том случае, если

изучаемые данные не являются временными рядами;

5) исходя из третьего и четвертого условий, можно добавить пятое условие о том, что случайная ошибка регрессионной модели является случайной величиной, подчиняющейся нормальному закону распределения с нулевым математическим ожиданием и дисперсией G 2 : ε i ~N ( 0, G 2). На основании перечисленных условий нормальная линейная модель парной регрессии записывается следующим образом:

y i = в 0 + в 1 x i + ε i ,

где y i – значения результативной переменной;

x i – значения факторной переменной;

в 0 , в 1 – неизвестные параметры модели парной регрессии;

ε i – случайная ошибка регрессионной модели;

n – количество наблюдений.

Нормальная линейная модель парной регрессии может быть также записана в матричном виде:

Y = βX + ε,

где Y – вектор значений результативной переменной размерности n × 1;

X – вектор значений факторной переменной размерности n × 2. Первый столбец является единичным, т. к. в регрессионной модели параметр в 0 умножается на единицу;

β – вектор коэффициентов регрессионной модели размерности 2 × 1; n.

ε – вектор случайных ошибок регрессионной модели размерности n × 1 .

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК