9. 6. Определение формы функций решения
9. 6. Определение формы функций решения
Модель, которая может воссоздать правильную динамическую систему поведения, требует формальных выражений, показывающих, как принимаются решения. Поток информации непрерывно превращается в решения и действия. Никакие ссылки на то, что мы недостаточно хорошо разбираемся в процессе принятия решений, не могут освободить нас от нахождения критерия, которым следует руководствоваться при принятии решения. Пренебрежение к принятию решений означает отрицание их существования — эта ошибка гораздо более значительная, чем любая ошибка, связанная с оценкой процесса.
Могут ли функции решений быть настолько точно определены, чтобы быть полезными? Вообще представляется, что могут. Вдумчивые наблюдения, обмен мнениями с лицами, принимающими решения, изучение имеющихся данных, исследование отдельных примеров решений и действий — все это может пролить свет на основные факторы, влияющие на принятие решений. Определение факторов, влияющих на решения, осуществляется в четыре этапа. Прежде всего мы устанавливаем, какие факторы достаточно значительны, чтобы их учитывать. После этого мы для каждого из факторов определяем, в каком направлении он влияет, какова значимость его влияния и какие нелинейности должны быть учтены. Рассмотрим подробно эти четыре этапа.
Факторы, подлежащие учету. При формулировании отдельной функции решения в модели прежде всего необходимо составить перечень тех факторов, которые оказывают важное влияние на решение. Ответ часто бывает неясным. В отношении фактора, который сначала представляется наиболее значительным, в дальнейшем может оказаться, что он слабо влияет на поведение модели или на действительную систему. В то же время фактор, на который в повседневной практике управления обычно не обращают внимания, может оказаться решающим в отношении важнейших черт всей системы в целом.
При выборе факторов, влияющих на решение, необходимо учитывать, оказывают ли они воздействие на характеристики информационной системы с обратной связью. Очень немногие лица имеют правильное интуитивное суждение относительно таких систем. Работа с моделями систем помогает развитию правильного суждения и интуиции. Лучшим способом определить влияние того или иного фактора на функцию решения в модели является наблюдение действия модели при наличии этого фактора и без него; при этом сама модель может быть использована для определения того, что она должна содержать.
Нельзя руководствоваться только степенью прямого влияния рассматриваемого фактора на решение. Следует принимать во внимание также степень обратной связи, которая характеризует влияние решения на фактор, вводимый в решение, а также временные характеристики обратной связи. Относительно слабые воздействия на решение могут быть важными в условиях «позитивной обратной связи», когда переменный фактор оказывает влияние на решение, а решение воздействует на вводимый фактор, усугубляя его влияние на дальнейшие изменения решения. Это можно наблюдать во многих случаях. Например, покупатели в ответ на возрастающие задержки в поставке товаров начинают покупать их впрок; возросший из-за этого уровень заказов увеличивает отставание с их выполнением, в результате чего задержки в поставке товаров еще более возрастают.
Направление эффекта. То направление, по которому изменения в определенном факторе влияют на решения, обычно вызывает мало сомнений. Однако следует быть бдительным для того, чтобы правильно представить себе и отрицательные и положительные последствия, которые часто возникают в результате влияния одного и того же фактора. Например, краткосрочное и долгосрочное влияния определенного, фактора на решение иногда действуют в противоположных направлениях. И если учитывать только длительные воздействия, то это может оказать серьезное влияние на динамическое поведение модели.
Несколько примеров иллюстрируют виды факторов, которые могут вызывать краткосрочный эффект (часто не принимаемый во внимание) в противоположном направлении, чем при их длительном воздействии, которое обычно принимается во внимание.
Обычно предполагается, что более высокие цены стимулируют больший выпуск продукции, однако для коротких сроков это иногда бывает не так. Первым шагом, предпринимаемым для увеличения производства мяса, является сокращение поставок скота на рынок с целью создания племенного стада, и таким образом объем продаж сокращается на два или три года; связанное с этим повышение цен означает возрастание стоимости живого «товарного» запаса, что в свою очередь вызывает увеличение периода откорма и также снижает уровень продажи мяса на период в несколько месяцев. В некоторых отраслях горной промышленности рост цен делает экономически целесообразным производство руды низших сортов; имеющееся оборудование с определенной производительностью в этом случае применяется для переработки худшего сырья; в результате уровень производства может снизиться, пока не будут введены в действие малодоходные рудники, которые раньше бездействовали. При расширении научно-исследовательских работ может возникнуть необходимость в найме большого числа людей; однако первоначальный эффект от этого может привести к снижению темпа работ, пока вновь принятые люди не будут обучены и втянуты в производственный процесс. В национальном хозяйстве, основанном на полной занятости, повышение спроса на товары может вызвать отвлечение рабочей силы от производства товаров ради привлечения их к строительству предприятий и производству оборудования; первый шаг к достижению долгосрочной загрузки производства первоначально сокращает производство (разумеется, это воздействие может быть уравновешено другими факторами, например более продолжительной рабочей неделей).
Сила воздействия функций решения. Динамическое поведение информационной системы с обратной связью определяется тем, каким образом изменения в одной переменной приводят к изменениям в другой. Анализ этого вопроса может привести к предположению о высокой чувствительности системы к точности параметров[47] в функциях решений, однако обычно это не так.
Если модель сконструирована правильно и она выражает действительную структуру социальной системы с обратной связью, то она будет обладать такой же способностью самокорректировки, как в реальных жизненных ситуациях. В предлагаемой формулировке модели все параметры, которые должны быть определены для функций решения, испытывают такое воздействие величин уровней, которое приводит к установлению темпов потоков, предусмотренных решениями. Эти уровни в свою очередь корректируются ответными решениями. Неточный параметр функции решения может потребовать соответствующей корректировки уровней в модели, пока не будет достигнуто правильное соотношение темпов потоков. Приведем некоторые примеры для иллюстрации этой внутренней корректировки. При определении параметра, характеризующего запаздывание в погашении счетов дебиторов, можно избрать слишком большую величину; это приведет к тому, что уровень счетов дебиторов слегка возрастет, но темп погашения будет все же связан с тем темпом, в котором берутся новые обязательства. Принятие в модели слишком низкого уровня спроса покупателей на автомобили приведет к снижению их товарного запаса и к постепенному сокращению автомобильных перевозок до тех пор, пока уровень спроса на автомобили не повысится. Изменение в уровне запаса готовых автомобилей поможет уравновесить функцию решения неточного уровня покупок; при этом динамика изменения темпа покупок в количественном отношении останется правильной, если иметь в виду другие переменные величины модели.
Мы должны больше беспокоиться о том, что говорит модель относительно факторов, которые вызовут изменения в темпах и уровнях, чем о точности в определении средней величины темпов и уровней.
Если модель правильно сконструирована, то, как это ни удивительно на нее часто не. оказывают влияния изменения, которые могут иметь место в большинстве параметров — иногда даже изменения в каждом из них. Чувствительность к избранным величинам параметров в модели должна быть не больше, чем чувствительность реальной системы к соответствующим факторам. Представляется очёвидным, что наша действительная промышленно-экономическая активность не должна быть слишком чувствительной к основным параметрам этой активности и что эти параметры изменяются не быстро. Это должно быть так, потому что важнейшие характеристики наших организаций остаются неизменными в течение длительного времени. Процветающая фирма стремится остаться такой на длительный период. Успех ее основывается на ее структуре и политике (включая важнейшие аспекты руководства). Национальная экономика США продемонстрировала удивительно подобные повторяющиеся экономические циклы на протяжении своей истории, несмотря на значительные изменения в технологии, в структуре денежного обращения, в быстроте коммуникаций и транспортировки, в соотношении значения промышленности и сельского хозяйства и в активности правительства.
Нелинейные функции решения. Нелинейные модели упоминались в разделе 3.1. Нелинейность модели проявляется в функциях решений, регулирующих темпы потоков. Линейная зависимость — это такая зависимость, в которой вводимые факторы комбинируются путем простого сложения или вычитания для определения результата. Предположим, что темп R зависит от переменных факторов X, У и Z, как, например, в следующей линейной функции:
Здесь переменные X, Y и Z оказывают воздействие на R каждая в отдельности. В частности, переменные Y и Z не определяют влияния переменной X на результат R. Далее, любое влияние на R пропорционально соответствующей переменной ввода, независимо от абсолютной величины, которую она может иметь. Линейные решения недостаточны для описания тех зависимостей, с которыми нам приходится иметь здесь дело.
Напротив, нелинейная функция решения может принимать самые разнообразные формы, как в следующем примере:
Здесь мы видим два источника нелинейности. В отношении члена аХ2 надо заметить, что он отражается на результате (R) не пропорционально изменениям X. При изменении X от 0 до 1 результат увеличивается на величину а; с изменением X от 1 до 2 он возрастает на утроенную величину а. В члене b(Y)(Z) влияние Y и Z зависит от величины каждого из них. Чем больше Z, тем значительней эффект от данного изменения Y; если один из них равен 0, то влияние другого тоже равно 0 независимо от его величины.
Для правильного описания поведения фирмы существенное значение имеют нелинейности этих двух типов. Поясним это примерами. Первая форма нелинейности имела место, когда влияние фактора, воздействующего на решение, не было просто пропорционально этому фактору. Например, имеющийся в наличии запас товаров для продажи воздействует на темп поставки товаров. Если запасы низки, то недостаток товаров ограничивает возможности поставки; в пределах «нормальных» запасов товаро-материальных ценностей изменения этих запасов окажут очень незначительное влияние на уровень поставки. Можно предположить, что большинство факторов, вводимых в функции решения, будут нелинейными и их влияние будет увеличиваться или уменьшаться с изменением пределов переменных.
Второй источник нелинейности в функциях решения возникает тогда, когда решение зависит не порознь от двух или большего числа вводимых переменных, а является результатом произведения или иной взаимозависимости этих переменных. В предшествующем примере поставка товаров не является независимым и изолированным ответом на запасы товаров и на объем полученных, но невыполненных заказов на эти товары. Мы не можем просто сложить эти две изолированные величины. Если нет заказов, то размеры запасов не имеют значения и не предопределяют поставку; если нет запасов, за счет которых может быть произведена поставка, то заказы не вызовут поставку.
Эти два вида нелинейности часто встречаются вместе. Рассмотрим зависимость темпов производства от имеющегося уровня- численности рабочих и необходимого для производства оборудования. На рис. 9–5 показано, как темп производства может повышаться с увеличением численности работающих на предприятии. Сначала, когда каждый вновь нанятый рабочий может воспользоваться любым необходимым оборудованием, производительность человеко-часа высока и кривая всего производства, круто поднимается вверх. После того, как достигается максимальная производительность оборудования, увеличение выпуска продукции на каждого рабочего снижается. Дальнейший рост числа работающих в конце концов приводит к максимально возможному темпу производства при данном оборудовании. Если и дальше увеличивать число рабочих, то это вызовет простои, беспорядок и потерю в темпе производства. Мы видим, что при данном количестве оборудования темп производства не пропорционален численности рабочих и представляет собой нелинейную функцию. Так как влияние любого данного изменения численности рабочих на темп производства зависит от количества оборудования, то эти два ввода воздействуют друг на друга. При недостаточном числе рабочих колебание количества оборудования от К до 2К не имеет значения. При большем числе рабочих влияние дополнительной рабочей силы все больше и больше зависит от того, будет ли введено дополнительное оборудование.
Рис. 9–5. Темп производства как функция численности рабочих и количества оборудования.
Линейные приближения к этим нелинейным отношениям обычно не дают удовлетворительного результата. Нормальные операции проводятся в достаточно широких границах, так что их нелинейность имеет первостепенное значение. Очень часто достижение какой-либо границы становится сигналом для ввода того или иного уравновешивающего действия (в приведенном выше примере снижение производительности человеко-часа в результате избытка рабочей силы является одним из вводов к решению заказать дополнительное оборудование).
Модели, которые мы формулируем, должны быть действенными в широких границах изменения переменных. Это желательно в силу нескольких причин. Мы захотим исследовать широкие пределы изменения различных условий; мы можем не знать заранее, какие значения примут различные переменные; мы захотим, наконец, чтобы модель была полезной за пределами границ, которые можно встретить в реальной системе, потому что разработка новых систем предполагает деятельность вне рамок прежней практики.
При построении модели следует использовать всю информацию, имеющую отношение к той системе, которая должна быть представлена. К совершенно необходимой информации относятся наши знания о том, чего следует ожидать при крайних условиях деятельности. Очень часто мы знаем больше о крайних лимитирующих условиях, чем о нормальных пределах деятельности. Очень часто мы знаем, какой степени кривизны должна достигнуть линия, связывающая две переменные, если переменная ввода достигнет нуля или какой-нибудь абсурдно большой величины. Выбирая функциональные зависимости с учетом всего, что мы знаем, мы увеличиваем шансы получить модель, которая будет действовать надлежащим образом.
Приближенное изображение функции ломаными линиями представляет очевидную опасность для правильного изображения производных переменных величин (их крутизны, скорости изменения крутизны и т. д.). Большая часть действующих ограничивающих условий оказывает свое влияние постепенно по мере приближения к границе. В этом случае приближенное изображение функции с помощью линейных отрезков, которые после очередного «излома» внезапно останавливают изменение функции, является неправильным и часто влечет за собой серьезные последствия, так как в точке «излома» все производные функции в высшей степени ошибочны.
Правильно изображенные функциональные зависимости, как уже говорилось, облегчают внутреннюю самокорректировку, когда в модели имеются уравновешивающие друг друга величины. Реальное поведение системы легче отобразить в нелинейной модели, чем в линейной, потому что, предполагая нелинейность модели, мы быстрее обнаруживаем те факторы, от которых зависит поведение действительной системы.