17. 3. Учебные программы
17. 3. Учебные программы
Если под управлением промышленным предприятием понимать организацию и регулирование системы и применение моделей, позволяющих исследовать ее поведение, то можно будет дать общую программу обучения управлению. Такая программа может быть принята как обоснование и эффективный «синтетический опыт» выработки руководящих правил. Изучение динамики системы может быть введено вначале на предпоследнем курсе института и продолжено в докторантуре и на курсах усовершенствования руководителей.
Цель. В учебном плане курса управления динамическое моделирование промышленного предприятия должно объединять другие предметы управления. Оно должно связать воедино различные функции и сделать понятным рост и изменение системы.
Гордон и Хауэл подчеркивают важность общего курса хозяйственного руководства. Они считают, что такой предмет должен включать изучение и анализ различных явлений и входить в программу последнего курса. В разделе 17.1 рассматривается, каким образом динамическая модель может придать стройность и точность анализу явления. Очевидно, что такой подход к изучению предмета не должен быть ограничен каким-либо сроком, пусть даже в год, так как студент не сможет быстро понять и усвоить закономерности поведения системы. Для полноты успеха студент должен погрузиться в теорию, анализ, лабораторную работу и конструирование модели на значительный период времени. Здесь, разумеется, имеются данные, которые могут быть хорошо изучены и поняты, кроме того материала, который потребовался бы для перехода от учебной программы к докторской диссертации.
Проектирование предприятий путем использования динамических моделей благоприятствует нового рода лабораторной работе в области теории организации и правил управления. В определенной мере студент может уже при прохождении своей учебной программы начать приобретать опыт управления промышленными ситемами[140].
Динамика системы и связанные с ней модели вносят информацию с обратной связью в самый процесс обучения. Идею можно развивать, ее можно проверять на опыте, результаты проверки могут быть оценены, и идея может быть пересмотрена. Эта последовательность изобретения, эксперимента, оценки и пересмотра была проиллюстрирована в связи с разработкой моделей в главах 13–15.
Такое прохождение курса делает возможным наблюдение и оценку личных характеристик студентов, которые часто нельзя обнаружить при обучении, так как экзаменами проверяется главным образом запоминание фактов, а не глубина усвоения предмета. Преобразовывая описание явлений в динамическую модель, студент встречается с необходимостью определить проблему, отчетливо представить себе динамику явлений, проявить инициативу и умение при выборе надлежащих факторов, справляться с неопределенностью и неполнотой информации и проявлять изобретательность в поисках улучшений системы.
Последовательность изучаемых предметов должна привести к пониманию студентами следующих положений:
— существуют основные характеристики систем, по которым можно определить, являются ли эти системы электрическими, механическими, химическими, биологическими, промышленными или экономическими;
— между частями системы существуют важные взаимодействия; эти взаимодействия часто бывают более важны, чем индивидуальные характеристики компонентов;
— статический анализ — неподходящий инструмент для решения вопросов управления;
— наша интуиция ненадежна при определении поведения сложных информационных систем с обратной связью;
— экспериментальнй метод построения модели является мощным орудием в ситуациях, недосягаемых для интуиции или решений путем математического анализа.
Методика обучения. Управление — как и техника, медицина и архитектура — это практическая профессия, задачей освоения которой является достижение определенных целей. Успешно работающий практик должен иметь высокие стимулы к совершенству; только конечная цель оправдывает целесообразность усилий. Поэтому представляется неправильным тратить долгие годы на изучение основных предметов, если студент еще не имел возможности увидеть свою цель.
Экспериментальное изучение динамики систем не покоится на каких-либо математических методах, которые не могут быть усвоены за несколько недель после окончания средней школы. Обучение управлению промышленным предприятием можно поэтому начать с изучения количественной стороны динамики системы, в тесной связи с описательной ее стороной в виде ознакомления с историей, чтения и истолкования текущей ежедневной и еженедельной деловой печати. Такой подход привел бы к познанию как основ деловой активности, так и внешних проявлений связанных с ней проблем. Это стало бы впоследствии стимулом для изучения науки, техники, финансов, права, экономического развития, правил и других сторон управления.
Исходя из опыта почти трехлетнего преподавания курса динамического моделирования промышленного предприятия, можно сформулировать несколько предложений:
— эффективным методом преподавания предмета являются лекции и беседы, объединенные с различными формами лабораторной работы. Последняя может включать расчеты простых примеров вручную, изучение более сложных систем путем моделирования на электронно-вычислительной машине, если такая имеется, а также путем индивидуального и группового формулирования моделей различных явлений в промышленности;
— моделирование в классе, при котором студенты играют роль различных компонентов системы, может быть использовано для демонстрации принципов, рассмотренных в разделе 17.2. Групповое моделирование может убедительно показать, что окружение является веским определителем «добровольных» решений и что «очевидное» лучшее решение, властно диктуемое доступной информацией, делает интуитивные решения различных людей удивительно похожими;
— даже в том случае, когда имеются электронная вычислительная машина и автоматический составитель программ, особое внимание должно быть уделено ручному подсчету простых динамических последовательностей. В этом случае хорошо выбранный пример дает большое количество информации студенту. Кроме того, время, требующееся на вычисление вручную, позволяет студенту наблюдать распространение возмущения по всей системе. В высокой степени ориентируют несложные действия, как, например, ступенчатый ввод в каналы снабжения. При превращении некоторых запаздываний из экспоненциальных в дискретные и при удлинении интервала решений приблизительно до одной недели одно из состояний сбытовой системы в главе 13 становится доступным для вычислений вручную. При надлежащем руководстве студент может изучить особенности взаимодействий темпов и уровней, узнать, каким образом запаздывания вызывают усиления, а различные правила принятия решений воздействуют на систему;
— при обучении динамическому моделированию промышленного предприятия преподаватель должен сосредоточить внимание на деловых понятиях, на способах выражения и установления взаимоотношений между факторами, не отвлекаясь на вопросы техники и методологии. В противном случае основная цель — изучение поведения системы — может легко утонуть в море ненужных технических мелочей[141];
— немалое число новых членов дирекции школ управления обучается теперь технике. Некоторые из них увлекаются использованием при решении задач управления терминов, заимствованных из области техники, хотя для этого нет веских оснований. Предмет не должен быть поставлен в невыгодное положение требованиями искусственной, необоснованной переработки терминов;
— возможности современных крупных электронно-вычислительных машин могут придать преподаванию экспериментальных динамических систем напряженность, живость и размах. Преподаватель такого курса должен иметь опыт построения моделей довольно сложных систем и их проигрывания на электронно-вычислительной машине. Однако преподаватель, имеющий этот опыт и верящий в то, что он делает, может, по-моему, достаточно эффективно вести курс и на базе ручной вычислительной техники, пользуясь методами группового моделирования. Приходится сожалеть, что современная электронно-вычислительная машина еще малодоступна, но это не должно помешать преподаванию динамического моделирования.
Родственные предметы. Функциональные предметы должны включать изучение сил, действующих внутри отдельных отраслей управления, и показывать, каким образом решения подвергаются влиянию информации, появляющейся внутри и вне функционального подразделения. Понимание отдельных функциональных областей существенно для их включения во всеобщую систему. Некоторые учебные предметы, отношение которых к динамической системе не так очевидно, заслуживают особого упоминания.
Хорошее изложение истории экономических систем, промышленных отраслей, фирм и отдельных проектов может служить как описательный исходный материал для конструирования динамических моделей. В этом материале должно, конечно, содержаться описание наиболее важных факторов. Однако в действительности получить такой материал трудно. Часто причины решений, которые были ясны на заседании комиссии или дирекции, своевременно не записываются, и историку, появляющемуся на сцене позднее, они остаются неизвестными. Для воспоминаний, как и для многих документов, характерна склонность описывать события и действия не такими, какими они были в действительности, а какими они должны были быть. История часто недостаточно говорит о таких взаимодействующих силах, как организационная напряженность, личная заинтересованность, технологические факторы, сопротивление достижению решений, противоречивость, целей и т. д.
Поучительная история прошлых ситуаций в области управления — это один из факторов, улучшающих понимание динамических систем. Способность к построению моделей сложных систем и изучению их поведения должна сделать изучающих прошлые события более внимательными к важным переменным системы. Они всегда должны пытаться возможно лучше исследовать и описать правила, согласно которым действия и давление различных обстоятельств оказывало влияние на выработку решений.
В совершенно другой области — на курсах изучения сервомеханизмов во многих технических отделах дается превосходная база для изучения промышленных систем. Хорошая подготовка к анализу линейных систем развивает интуитивное понимание и острое восприятие тех факторов, которые определяют типичные особенности поведения систем с обратной связью.
Основные принципы построения обычных систем с обратной связью можно в равной мере использовать как в инженерных, так и в промышленных и экономических системах, хотя количественная сторона здесь существенно различна. В нашем случае нет простых, однозвенных систем контроля, в которых есть одна точка, где ошибка обнаруживается, и одно место, где исправление ошибки контролируется. Как обнаружение ошибки, так и контроль распределяются по всей системе. И то и другое содержится в каждом решении. Многие приемы практического конструирования, предназначенные для технических систем, не применимы к социальным системам. Многие методы полезны в технических системах в силу особых характеристик этих систем. Технические системы стремятся проектировать и использовать таким образом, чтобы нормальные рабочие частоты, собственные частоты системы и выраженные частоты помех были бы различными. Это, кажется, не имеет места в наших промышленных системах, в которых возмущающая помеха, собственные частоты системы и рабочие частоты — все входят в одну частотную группу. По моему мнению, теория сервомеханизмов будет оставаться важной частью тех общих знаний, на фоне которых готовятся руководители в области динамического моделирования промышленных предприятий, но как экспериментальное и оперативное орудие теория сервомеханизмов непосредственно применяться не будет.
Массачусетский технологический институт в 1961 г. В 1961 г. курс динамического моделирования промышленного предприятия был включен в каждую из четырех программ Школы управления промышленностью при Массачусетском технологическом институте. Для студентов последнего курса и аспирантов имелись два факультативных связанных между собой односеместровых курса, составлявших вместе учебный год. Получавшие стипендию им. Слоуна (мужчины в возрасте от 30 до 40 лет, направленные их фирмами в институт на полный календарный год) слушали этот предмет 3 часа в неделю в течение 7 недель; к этому добавлялись 9 часов на лабораторную работу. Программа для старших администраторов (10-недельный курс для руководителей промышленности в возрасте от 40 до 50 лет) содержала введение в этот предмет, рассчитанное на 6 лекционных часов..
В будущем имеется в виду расширить нынешние два курса для аспирантов до четырех связанных между собой односеместровых курсов с общей продолжительностью 2 года.
Как это было характерно для других дисциплин в прошлом[142], динамическое моделирование, вначале развивавшееся только в аспирантуре, стало затем частью курса методов управления на последнем курсе института. На всем протяжении программы последнего курса оно давало общий подход к функциональным предметам и непрерывно вводило студентов в существо поведения промышленного предприятия, в его проблемы, историю и текущую печать.