12. 4. Структура и элементы модели

12. 4. Структура и элементы модели

На протяжении всего изложения методов динамического моделирования предприятия мы подчеркиваем, что обоснованность модели определяется главным образом обоснованностью каждого входящего в нее элемента. Такой способ определения обоснованности применим не только при рассмотрении формы любого из уравнений, но и при выборе границ системы, ее переменных и принимаемых взаимосвязей между этими переменными.

Важность доказательства обоснованности элементов модели опирается на рабочую гипотезу о том, что если все необходимые компоненты адекватны описанным и взаимодействуют соответствующим образом, то поведение модели не будет отличаться от ожидаемого. Обратное положение несправедливо; сочетание значительного числа неверных параметров и ложных структурных элементов может иногда привести к отображению моделью поведения реальной системы; однако эти неадекватные структурные элементы в большинстве случаев не приведут нас к выявлению лучших вариантов системы.

При создании и оценке модели мы должны обобщить все доступное нам многообразие знаний о системе. Большинство этих знаний связано с опытом и памятью людей, которые наблюдают за системой и работают в ней. Большое количество информации содержится также в описательной литературе. Числовые или статистические данные, непосредственно пригодные для решения главных задач построения моделей, известны нам лишь в редких случаях.

Динамическая модель промышленного предприятия строится на основе той же информации и данных, которые обычно используются руководителем для построения воображаемых моделей процесса управления. Дееспособность динамической модели не зависит от получения лучшей информации по сравнению с той, которая имеется у руководителя; она определяется способностью использовать большую часть той же самой информации, и притом использовать ее с большей пользой.

Можем ли мы установить объективные и неоспоримые количественные критерии того, насколько правильно составлена модель? Пригодность модели для описания конкретной системы должна быть проверена в отношении:

— границ системы;

— взаимосвязи переменных;

— значений параметров.

Границы системы. Первым и наиболее важным вопросом при детальном конструировании моделей является вопрос выбора границ модели системы. Как отмечалось ранее, в разделе 12.2, выбор границ определяется поставленными перед моделью целями. Если выбранная для изучения система не содержит ответов на поставленные вопросы, то моделирование будет бесполезным. Если границы взяты неоправданно большими, то полученные решения затеряются в массе мелких подробностей и могут привести к такой путанице, что от задуманного проекта придется отказаться.

Подобно выбору целей, выбор границ системы не может быть выполнен на основании объективно проверенной теории. Необходимо помнить, что применять общепринятые методы и положения следует с большой осторожностью, искусно и со здравым смыслом используя удачный опыт.

Это не означает, что при выборе границ мы находимся в затруднительном положении из-за недостатка фактических данных о реальной системе. Наоборот, нам часто приходится решать вопрос о том, какую часть из располагаемых знаний целесообразно использовать при создании модели. При построении различных моделей мы почти всегда располагаем значительным объемом информации. Однако в этой информации содержится большое число противоречий, которые обычно не могут быть разрешены достаточно объективно. Один человек может разрешить противоречия посредством, на его взгляд, объективного суждения, в то время как другой не примет какого-либо решения до тех пор, пока он не будет располагать результатами проверки в реальных условиях.

Взаимосвязь переменных. Второй наиболее важный вопрос построения модели связан с рациональным выбором переменных модели и с адекватностью их взаимосвязей. В конечном итоге этот выбор также основывается на наших рабочих знаниях о системе. Наиболее сложным является вопрос о выборе функций принятия решений. В значительной степени эти функции относятся к информационным сетям, где правила принятия решений не являются формальными. Для большинства функций принятия решений невозможно получить достоверные числовые данные. Следовательно, модель должна быть составлена на основании описательной информации о политике управления.

Существует несколько исключений из этого общего положения, для которых оказывается возможным получение некоторых числовых данных. Однако даже эти случаи не могут удовлетворить нас в предпринимаемых попытках сформулировать объективный, определенный в количественном отношении критерий, который необходим нам при создании модели. Численные данные оградят нас от явно ложных гипотез о процессе принятия решений, но в то же время они едва ли помогут доказать корректность других гипотез. Два или три ввода в пункт принятия решений могут объяснить большинство выходов, но какого рода соответствие является удовлетворительным? Ключ к пониманию поведения системы может быть утерян, если влияющая на поток решений информация, передаваемая по каналу положительной обратной связи, заглушается шумами в этом канале. В этом случае информация обратной связи будет в большой степени коррелирована с другими переменными. При проведении статистического анализа сигнал обратной связи может легко пройти незамеченным либо среди случайного шума, либо будучи принятым как часть входного сигнала той или иной переменной.

Далее, сама по себе величина входного сигнала в пункт принятия решения еще не определяет характера динамического поведения системы. Продолжительность действия, фаза и форма сигнала могут в значительной степени превосходить влияние его величины на характер динамических характеристик системы.

Методы объективного анализа еще не дают гарантий того, что переменные выбраны правильно и что их взаимосвязь установлена достаточно точно. Однако мы должны провести негативное испытание — испытание, которое является необходимым, но может не дать само по себе положительного результата. Если полученный при испытании модели поток решений несовместим с гипотезами о процессе принятия решений, то испытание обмануло наши надежды. С другой стороны, выполнение единичного испытания не дает гарантий правильности принятых гипотез. Даже очень близкое совпадение опытных результатов с данными, полученными на основании выдвигаемых гипотез, не дает оснований считать эти гипотезы правильными. Гипотезы, основанные на неверном выборе переменных при соответствующей компенсирующей корректировке значений параметров, могут в результате статистических испытаний дать такие показатели, которые математически покажутся более удовлетворительными, чем в том случае, когда в основу решений заложены более адекватные причинные связи между переменными, но допущены ошибки в значениях параметров; эти ошибки снижают точность получаемых количественных характеристик, но не искажают динамического поведения модели.

Ошибка при включении переменных системы в модель может привести к полной бесполезности модели как орудия исследования. Можно надеяться, что в дальнейшем, когда динамическое поведение системы станет более понятным, возникнут полезные руководящие принципы по выбору содержания модели. А пока необходимо помнить, что наиболее эффективная модель будет создана теми, кто знает реальную систему и в то же время владеет методами анализа динамических систем.

Значения параметров. Третий, менее важный вопрос, который должен быть рассмотрен при оценке эффективности модели, связан с выбором значений параметров. Можно показать, что динамические характеристики системы сравнительно мало изменяются при изменении величин большинства параметров, то есть чувствительность системы к изменению этих параметров мала; поэтому значения таких параметров можно выбирать в известной мере произвольно. Параметры, к изменению которых модель весьма чувствительна, могут быть определены на основании испытаний модели. При этом не так важно знать значения этих параметров в прошлом, как правильно оценить и выбрать эти значения в соответствии с условиями работы системы в будущем.

Численные значения параметров для какой-либо функции принятия решений могут быть определены на основании ряда формальных статистических испытаний. Это выполняется после того, как:

— установлены задачи моделирования;

— определены границы системы;

— произведен выбор основных переменных;

— сформулированы гипотезы, определяющие взаимодействие переменных;

— приняты основанные на произвольных суждениях решения о значениях параметров, удовлетворяющих условиям статистических испытаний.

Затем исследователь должен определить, могут ли выбранные в результате статистических испытаний параметры способствовать решению поставленной задачи улучшения действия системы.