12. 5. Динамические характеристики системы

12. 5. Динамические характеристики системы

Изолированная (замкнутая) модель динамической системы может воспроизводить временные характеристики, которые в рамках поставленных целей исследования не будут существенно отличаться от динамических характеристик реальной системы. Такое соответствие поведения модели реальным условиям будет результатом сочетания структуры и руководящих правил действия модели, каждый элемент которой построен безотносительно к правильности поведения системы.

Чем больше мелких подробностей в характеристике модели будет согласовываться с имеющимися данными о функционировании системы, тем больше будет наша уверенность в пригодности модели. Однако тождественность характеристик модели и реальной системы не является сама по себе доказательством возможности использовать модель для уверенного предсказания ожидаемых результатов от вносимых изменений.

Поскольку подобие модели действительному характеру системы является необходимым (но не достаточным) условием, мы должны рассмотреть, что здесь понимается под подобием. Недостатки поведения модели, особенно на первых этапах ее создания, часто будут сами указывать пути устранения допущенных неточностей и ошибок. На что должны быть направлены наши поиски? Каким образом можно проверить подобие двух систем?

Первая проверка модели состоит в том, чтобы ее поведение не было бесспорно ошибочным. Такая проверка на первый взгляд может показаться элементарной. Однако литература в области экономики и теории управления содержит очень незначительное число примеров моделей, которые удовлетворяли бы этой оценке и, будучи полностью изолированными системами, давали бы такое изменение характеристик во времени, которое соответствовало бы нашим знаниям о реальной системе.

На первой стадии разработки модели неправдоподобность ее действия проявляется с особой очевидностью. Так, например, значения физических величин, таких, как запасы, могут оказаться отрицательными. Потоки некоторых величин, которые по их физической сущности являются однонаправленными, могут изменить направление и двигаться в противоположном направлении. Значения переменных могут выходить за пределы, допустимые в реальных условиях. Эти явления могут иметь место даже тогда, когда структура модели и ее отдельных элементов была тщательно продумана. Причины подобных явлений легко различимы. Детальный анализ изменений значений переменных системы обычно приводит к выводу, что отмеченные явления определяются несоответствием правил принятия решений в модели и в реальной системе. Очень часто оказывается, что в моделируемой системе существуют более жесткие условия, чем были приняты в модели, и правила принятия решений (обычно с нелинейными зависимостями) оказываются неприемлемыми в достаточно широких границах работы системы.

Второй эффективный способ проверки модели состоит в исследовании ее работы при наличии дополнительных заведомо ошибочных или несоответствующих реальной системе условий, например при чрезмерно широких пределах изменения параметров окружающей среды, но в рамках поставленных целей. Эти изменения могут существенно превосходить вероятные значения параметров, когда-либо возможные в системе. Большая часть наших знаний о системе проявляется в форме предвидения того, насколько при возникновении различных критических условий может оказаться неудачной формулировка руководящих правил. Это предвидение, подкрепленное испытаниями модели на «возможное критическое состояние», часто позволяет выявить причины ее ошибочных действий, которые малозаметны в обычных условиях.

Исключив очевидные «неправдоподобности» в модели, перейдем теперь к анализу более сложных явлений. Мы должны сконцентрировать наше внимание на всех динамических характеристиках модели, которые могут быть сопоставлены с характеристиками реальной системы.

Первый шаг обычно заключается в установлении подобия наиболее сомнительных симптомов для модели и реальной системы. Если модель охватывает причины возникающих в системе трудностей, то она выявит те же самые тревожные симптомы этих трудностей, которые характерны для реальной системы даже в тех случаях, когда эти симптомы достаточно удалены от того места, где действует причина трудностей.

Если в системе имеют место колебательные явления, необходимо сравнить период колебаний переменных в модели и в реальной системе. Существенная разница в значениях параметров этих движений указывает на то, что либо неверно определены коэффициенты, либо не учтена при анализе какая-то важная часть системы. Так как большинство людей обычно недооценивает запаздывания при принятии решений и при их осуществлении, то естественные периоды изменения величин в модели будут меньше, чем в реальной системе. Причиной этого чаще бывает упрощение системы, связанное с пренебрежением второстепенными элементами в политике принятия решений и в каналах их реализации, чем вследствие агрегирования переменных (особенно запаздываний) в различных частях системы.

Взаимосвязь смещений фаз различных переменных[56] часто выявляет меру подобия данных, полученных на модели, и данных, характеризующих развитие реальной системы. Однако поскольку эти временные связи фаз зависят как от частоты возмущений, так и от темпов изменения определенных переменных, то они не могут быть бесспорными критериями при сопоставлении модели и реальной системы.

Для выявления соответствия полученного на модели потока решений реальной системе можно проанализировать числовые данные и графики, полученные в результате проигрываний на модели. Если в политике принятия решений, положенных в основу модели, имеются неверные положения, то при некоторых проигрываниях на модели возникнут условия, которые явно не соответствуют действительности. Анализ результатов этих проигрываний может привести к выявлению неучтенных факторов, которыми нельзя пренебречь. Таким образом, существенной проверкой пригодности модели является сопоставление качества принимаемых решений с теми решениями, которые имеют место в моделируемой системе. Это сопоставление должно выполняться для всех точек системы в различные моменты времени. Такую очевидную проверку применил бы всякий для оценки компетенции управляющего.

Со сдвигом по фазе и периодичностью явлений тесно связан характер изменения переменных системы. Реальные промышленные системы существенно отличаются одна от другой характером изменения цен, темпов производства, потоков заказов и других переменных. Модель системы должна давать такие же динамические характеристики, какие существуют в действительности, в реальной системе.

Многие характеристики системы, которые трудно установить в реальных условиях, могут быть выявлены и проанализированы на модели. Очевидно, что эти обнаруженные с помощью модели характеристики не должны противоречить тому, что нам известно о реальной системе. Системы различаются между собой тенденциями усиливать или подавлять внешние возмущения. Это легко можно наблюдать на модели[57] но в реальных условиях об этом можно судить лишь на основании выводов, полученных в результате рассмотрения влияния изолированных возмущений. Подобным образом могут быть проанализированы реакции модели на нелинейные условия[58], и некоторые из них могут служить доказательством пригодности модели, если они согласуются с реакциями реальной системы.

Многие характеристики поведения системы в прошлом могут быть измерены количественно. На этом основании можно сформулировать ряд количественных критериев как основы сравнения результатов работы моделей с данными, полученными в реальных системах. Однако, прежде чем приступать к этому, необходимо решить, по каким показателям следует производить сравнение и различие в значениях каких параметров следует признать существенным. В ряде случаев общая качественная картина развития явления на модели близка действительному протеканию этого явления (часто в пределах, не превышающих двухкратных отклонений). Тогда соответствующей корректировкой параметров отображаемой системы (не выходя за пределы их возможных величин, в соответствии с нашими знаниями о реальной системе) возможно изменить полученные на модели решения до любых желаемых значений. Кроме того, обычно имеется несколько параметров, каждый из которых может привести к ложным результатам. Попытка достичь наибольшего соответствия модели реальной системе не тождественна изысканию рекомендаций с целью создания наилучшей системы. Предполагаемые изменения не зависят от точности наших знаний о системе; в основном они определяются взаимосвязями в модели, которые могут дать хорошее приближение к интересующим нас характеристикам системы.

В тех случаях, когда корректировка параметров модели с целью достижения более точного соответствия с системой не приводит к заметному повышению эффективности модели и когда мы не в состоянии отдать предпочтение какой-либо одной из двух различных по структуре моделей вследствие небольшого различия в получаемых на этих моделях решениях, то нет особой необходимости уточнять формулировки определений и измерения. Таким нам представляется существующее сегодня положение вещей. Нет никаких сомнений в том, что в будущем эта точка зрения изменится. Существенные преимущества создания систем с помощью моделей сейчас настолько велики, что пока еще не возникает потребности в более точных инструментах. По мере того как системы управления будут улучшаться и станут нам более понятными, будет появляться потребность в более точных средствах и усовершенствованных инструментах.

Итак, крупные ошибки при создании модели обычно легко выявляются при сопоставлении явно ошибочного поведения модели с тем, что следует ожидать в реальной системе. Если поведение модели недостаточно близко ожидаемому в реальной системе (определение «достаточно близко» зависит от целей модели и существа наблюдаемых различий), то мы должны вновь начать с рассмотрения элементарной структуры системы, ее границ и элементов. Необходимо найти объяснение причин несходства, что позволит исправить поведение модели. Чтобы изменить конкретные характеристики любой модели, необходимо выполнить значительный объем работ; для этого требуется глубокое знание рабочих деталей действительной системы.