Назад в будущее
Одна из шумно разрекламированных концепций касательно больших данных связана с якобы новым миром, создаваемым набором нереляционных инструментов, которые не опираются на реляционные базы данных и не используют SQL в качестве первичного интерфейса. Аббревиатура SQL расшифровывается как «язык структурированных запросов», и на протяжении многих лет его называли «языком бизнеса». Нереляционнные наборы инструментов не используют SQL эксклюзивно либо вообще его не используют. Приверженцы нереляционного подхода считают, что возникла потребность в дополнительных языках, поскольку SQL во многих компаниях был практически единственным языком бизнеса. В конце концов почему бизнес не может быть многоязычным? Он и должен быть таковым. Более того, он должен был быть таковым с самого начала.
Давайте сразу же разоблачим роковое заблуждение. Дело в том, что нереляционная аналитика – далеко не новая концепция. Когда я начинал свою карьеру аналитика, реляционных баз данных в мире бизнеса еще не существовало. Как и не существовало SQL. Поэтому всю аналитику мы выполняли с помощью нереляционных методов. Например, я обычно использовал инструменты из SAS (системы статистического анализа). Для специалистов вроде меня язык SQL действительно был новинкой. Со временем мы поняли, что SQL лучше подходит для определенных видов задач и обработки. Но всегда встречались и такие виды обработки, которые профессиональные аналитики по-прежнему осуществляли вне окружения SQL.
Сегодня же, с появлением больших данных, организации вновь открыли для себя ценность обработки вне контекста SQL в тех случаях, когда это имеет смысл. Оказалось, что источники больших данных гораздо чаще, чем источники традиционных данных, оправдывают использование нереляционных технологий. Однако многие компании зашли слишком далеко и постарались втиснуть всю обработку в парадигму SQL. Это было ошибкой; организациям действительно необходимо включать в свой набор различные подходы. Просто вы должны знать, что нереляционные технологии были доступны всегда. И дело не в том, что в течение 2010-х гг. не существовало никакой необходимости в нереляционной обработке. Скорее компании слишком сильно сконцентрировались на SQL. Можно ожидать, что в будущем SQL останется доминирующим подходом для анализа данных, а нереляционная аналитика станет применяться в специфических целях.
Огромный сдвиг во взглядах на большие данные
После того как на протяжении нескольких лет предсказывалась скорая смерть SQL, сегодня нереляционные платформы стремятся дополниться интерфейсами SQL. В этом нашли отражение не только огромный сдвиг во взглядах, но и реальные потребности бизнеса.
Организациям следует внедрять набор нереляционных инструментов когда это уместно, но ни в коем случае нельзя предполагать, что при этом отпадет необходимость в использовании наряду с ними и SQL. Ведь так легко впасть в противоположную крайность, и многие организации сегодня подвергаются риску поступить именно так. Но, хотя в течение нескольких лет многие эксперты провозглашали смерть SQL, вследствие массовой перемены мнений сейчас возникло сильное движение за внедрение функциональности в стиле SQL в широкий спектр нереляционных платформ, таких как Hadoop. В очередной раз мы возвращается назад в будущее. Подробнее об этом тренде и о том, как правильно выбрать тип обработки, мы поговорим в пятой и шестой главах.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК