Использование прогнозной аналитики в МСБ
Согласно ряду интервью с руководителями МСБ, бухгалтерами по налогообложению, а также с управляющими банками и менеджерами по работе с клиентами, всем им нужна прогнозная аналитика. С одной стороны, она поможет принимать лучшие решения, с другой – поможет в борьбе с финансовой неграмотностью и предоставит владельцам и менеджерам наглядную визуализацию и понимание зависимостей и уровня сложности, а также позволит планировать будущие сценарии денежных операций.
Было бы интересно прогнозировать следующие цифры:
• движение денежных средств;
• влияние колебания обменного курса;
• спрос на специальные продукты, например количество возобновляемых кредитных линий, деривативные/хеджевые инструменты для специальных продуктов или валют.
Платформа прогнозирования должна быть обеспечена высокопроизводительным интерфейсом взаимодействия с внешними источниками данных.
• Макроэкономические данные. Пользователей системы могут попросить предоставить дополнительные данные, такие как геолокация, размер (доход, количество сотрудников), отрасль, обычное местоположение, а также отрасль производителей и клиентов. Эти исходные данные могут сформировать основание для загрузки приблизительных внешних макроэкономических данных в прогнозы.
• Системы хранения данных/бухгалтерские/ERP/CRM-системы. В зависимости от размера и отрасли компании должна применяться одна из этих систем. Их данные могут использоваться непосредственно в качестве необработанных входных данных для алгоритмов прогнозирования или – будучи агрегированными или результатом прогноза – формировать факторы при планировании сценариев.
• Дополнительные банки. Как только компания достигает определенного размера, высока вероятность того, что ей потребуются связи с другими банками, например договор аренды или ссуда под недвижимость в другом финансовом учреждении. Это даже может быть синдицированный банковский кредит или более крупные денежные средства. Стандарты отрасли и финтех-компании, такие как FIGO, предлагают связываться с этими банками и получать их транзакционные данные, возможно даже в режиме реального времени.
Прорывной характер таких методов может быть довольно широкомасштабным. Он оказывает немедленное влияние на консультантов, бухгалтеров по налогообложению и сотрудников компании. Банки, которые располагают такими данными, могут изменить цену финансовых инструментов и, в конечном счете, даже котировки риска.