6. 7. Интегрирование уравнений первого порядка вместо интегрирования уравнений более высокого порядка

We use cookies. Read the Privacy and Cookie Policy

6. 7. Интегрирование уравнений первого порядка вместо интегрирования уравнений более высокого порядка

При рассмотрении формы уравнений уровней[40], которые представляют собой разностные уравнения, отмечалось, что для нахождения уровней по заданным темпам используется последовательное решение уравнений первого порядка. В точных расчетах, связанных с научными исследованиями, часто используется метод решения уравнений высшего порядка. В нашей работе для применения этого более строгого метода вычислений нет, по-видимому, оснований, тем более что практическое применение его связано с серьезными затруднениями.

Мы не ставим задачи повышения точности вычислений. Сам характер систем с обратной связью делает решения нечувствительными к ошибкам, возможным при округлении и сокращении. Мы даже будем преднамеренно вносить дополнительные искажения в величины темпов, которые должны быть определены. Интервал решений может устанавливаться эмпирически и изменяться таким образом, чтобы проанализировать, чувствительны ли решения к применению упрощенных вычислительных методов.

Использование более сложных методов вычислений могло бы сделать формулировку уравнений менее понятной для руководителя и экономиста, не обладающих навыком свободного обращения с математическими методами. Преимущества, создаваемые простотой и наглядностью прямого формулирования, более ценны, как нам кажется, нежели любое незначительное повышение точности, которого можно достигнуть с помощью более тонких методов вычислений.