§ 11.8.1. Чистая текущая стоимость (NPV)
NPV – это сегодняшняя стоимость суммы денег, причитающейся в будущем, с учетом стоимости денег, известной как ставка дисконтирования. Формула для расчета NPV будет следующая:
С ? (1 + i)n,
где С – это сумма будущего денежного потока, i – это проценты, или ставка дисконтирования, и n – это номер периода. (Ставка дисконтирования может быть годовой или, к примеру полугодовой, в соответствии с периодом времени.)
Таким образом, если ставка дисконтирования или стоимость денег составляет 10 % ежегодно и сумма, ожидаемая через год, – это 1000, то NPV для этой суммы составляет:
1000 ? (1 + 0,10),
или 909,1. Рассмотрим эти вычисления наоборот, если 909,1 – это сумма инвестиций на год при ставке 10 %, 1000 (то есть 909,1 ? 1,10) будет выплачены в конце года. Точно так же NPV для суммы в 1000 при расчете за период в два года, при ставке дисконтирования в 10 %, рассчитываемая для полугода (то есть при 5 % за полгода), составляет:
1000 ? (1 + 0,05)4,
или 822,7.
NPV денежного потока определяет текущую стоимость для серии будущих денежных сумм. Это рассчитывается следующим образом:
то есть сумма чистого денежного потока для каждого будущего периода (обычно при расчете для проектного финансирования это полугодовой период), денежный поток каждого периода дисконтируется до его NPV по ставке дисконтирования (нет необходимости использовать формулу или свод таблиц, чтобы рассчитать NPV, – это можно легко сделать при помощи финансового калькулятора или соответствующего программного обеспечения).
Применение расчетов NPV может быть проиллюстрировано с помощью сопоставления денежных потоков для двух инвестиций, которые представлены в табл. 11.5. Первоначальные суммы для каждой из них составляют 100, и денежный поток за период времени в 5 лет составляет 1359, что, в свою очередь, генерирует доход (чистые первоначальные инвестиции) в 350. Денежный поток для каждого года продисконтирован к его NPV при ставке в 10 % ежегодно. Дата «Год 0» – это первый день проекта, после того как осуществлены инвестиции; оставшиеся денежные потоки приведены для последующих полугодовых интервалов.
Как можно заметить, хотя недисконтированные денежные потоки равны между собой, NPV для инвестиций А составляет 49 (то есть дисконтированные денежные потоки с 1-го по 5-й годы в 1049 составляют сумму, которая меньше первоначальных инвестиций в 1000), тогда как для инвестиций B это ?2.
Ставка дисконтирования, используемая инвесторами для собственного капитала проектной компании, – это минимально необходимая ставка доходности инвестиций, которая обычно выводится из стоимости капитала инвесторов (см. § 11.12.1). Если NPV, использующее эту ставку дисконтирования, является положительным числом, то инвестиции отвечают минимальным требованиям; если нет, то не стоит инвестировать. В таблице 11.5, если инвесторы требуют доходность как минимум в 10 %, то совершенно очевидно, что инвестиции А отвечают таким минимальным требованиям, поскольку результат положителен, тогда как инвестиции В не отвечают этому требованию. Расчет NPV может быть также использован при рассмотрении вопроса, какой из двух проектов (с различными денежными потоками) лучше (но необходимо учитывать выводы, которые даны в § 11.8.3), – понятно, что для случая, который представлен в таблице, инвестиции А – это более выгодный вариант вложений. Такая разница при расчете NPV демонстрирует значимость распределения по времени денежных потоков.
Как будет отмечено в § 11.9, расчеты NPV также используются заимодавцами при расчете коэффициентов покрытия для заимствования.