3.1.1. Оценка риска линейных финансовых инструментов
Основы теории управления рисками закладывались в те времена, когда производные финансовые инструменты не имели широкого распространения. Соответственно, все классические методики оценки рисков были разработаны для линейных инструментов. В качестве базовой концепции для количественного выражения риска было принято утверждение, что риск владения определенным активом пропорционален мере изменчивости его цены.
Дать объективную оценку изменчивости цены можно только на основе информации о ценовых колебаниях, имевших место в прошлом (другие оценки, основанные на экспертных мнениях, нельзя считать объективными). Такой подход имеет существенный недостаток, поскольку основывается на экстраполяции исторических данных и предположении, что вероятность будущих событий можно рассчитать исходя из наблюдения частоты возникновения аналогичных событий в прошлом. Хотя во многих областях деятельности (например, расчет рисков автострахования) данная методика может быть приемлема, многократно доказано, что в отношении финансовых рынков она, мягко говоря, несовершенна. Тем не менее, несмотря на все недостатки и неточности, возникающие при оценках рисков на основе исторических данных, такой подход широко распространен и является общепризнанным, поскольку на сегодняшний день не существует более совершенных альтернатив.
В качестве меры изменчивости, для обозначения которой в большинстве случаев используется термин «историческая волатильность», было предложено использовать стандартное отклонение доходностей (приращений цены) заданного инструмента. Как правило, историческая волатильность рассчитывается как среднеквадратичное отклонение логарифмов дневных цен закрытия, приведенное к годовому эквиваленту. Глубина исторического периода, используемого для расчета волатильности, является ключевым параметром при оценке рисков линейных активов. При использовании слишком длинных временных рядов существует риск того, что оценка текущего риска будет основываться на устаревших данных, не имеющих прямого отношения к динамике современного рынка. Такая оценка не может считаться надежной. С другой стороны, использование слишком коротких временных рядов чревато получением нестабильных оценок риска, поскольку происходящее с течением времени добавление новых и выбытие устаревших данных изменяет довольно серьезно всю расчетную базу, используемую для расчета волатильности. Поэтому выбор глубины исторического горизонта является продуктом компромисса и определяется в зависимости от того, для каких целей производится оценка риска. В частности, этот выбор может определяться исходя из особенностей разрабатываемой торговой стратегии.
Хотя стандартное отклонение само по себе является оценкой риска, оно может также использоваться для расчета более сложных показателей, выражающих риски в более удобной для практического использования форме. Наиболее известным примером такого показателя является ValueatRisk (VaR), представляющий собой оценку убытка, который с заданной вероятностью не будет превзойден в течение определенного периода времени. Иначе говоря, VaR представляет собой оценку максимального убытка при определенном уровне значимости.
История появления и широкого распространения этого показателя восходит к биржевому краху 1987 г., показавшему несостоятельность существовавших на тот момент механизмов управления рисками. Поиск новых подходов к прогнозированию риска привел к быстрому развитию и широкому применению инновационной технологии, выражающей риск не в виде статистического показателя, каковым является стандартное отклонение, а путем вычисления конкретной суммы денег, которая может быть потеряна с заданной вероятностью. В 1990-х гг. этот индикатор стал общепризнанным стандартом измерения риска, а в 1999 г. получил официальный международный статус, закрепленный Базельскими соглашениями. Со временем VaR стал обязательным показателем, фигурирующим в отчетности большинства финансовых организаций.
Признавая, что с практической точки зрения VaR намного удобнее в использовании, чем стандартное отклонение, концептуально эти показатели ничем друг от друга не отличаются. В этом легко убедиться, рассмотрев методику вычисления VaR. Существуют три основных способа расчета: аналитический, исторический и методом Монте-Карло. Аналитический метод основан на использовании параметров выбранного распределения доходностей. Чаще всего используется логнормальное распределение (несмотря на его многочисленные недостатки). Поскольку основным параметром данного распределения является стандартное отклонение (второй параметр, математическое ожидание цены, обычно принимается равным текущей цене актива), можно утверждать, что VaR является всего лишь показателем, производным от стандартного отклонения. Исторический метод предполагает использование изменений цен актива, произошедших за определенный промежуток времени в прошлом. Поскольку стандартное отклонение рассчитывается на основе тех же данных, оба показателя сильно коррелируют между собой и, по сути, выражают одну и ту же величину. С помощью метода Монте-Карло генерируется множество случайных вариантов цены актива. И вновь алгоритм генерации цен основан на использовании функции плотности вероятности определенного распределения. В качестве распределения обычно используется логнормальное, основным параметром которого, как и в случае применения аналитического метода, является стандартное отклонение. Из вышесказанного следует, разработка показателя VaR добавила удобства пользователям, но не привела к созданию новых принципов оценки рисков.
Вычисление риска портфеля, состоящего из линейных активов, не представляет большой сложности. В большинстве случаев стандартное отклонение и VaR такого портфеля вычислимы с помощью аналитических методов, для чего достаточно знать стандартное отклонение каждого инструмента, его долю в составе портфеля, а также необходимо иметь ковариационную матрицу. Последнее необходимо для того, чтобы учесть эффект диверсификации, заключающийся в снижении риска портфеля в результате включения в его состав слабо коррелирующих активов (или активов с отрицательными корреляциями). Риск портфеля, включающего нелинейные инструменты, невозможно вычислить аналитически. Для этого приходится пользоваться методами числового моделирования, самым распространенным из которых является метод Монте-Карло.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК